The following tasks are designed to provide a refresher on bases and transformations between them.
Given the following bases vectors for $\mathbb{R}^2$:
$$ \begin{array}{l} 1. \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \\[12pt] 2. \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\} \\[12pt] 3. \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\} \\ \end{array} $$# Write solutions here
Consider three bases in $\mathbb{R}^2$:
Given two vectors in the standard basis:
$$ \text{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \text{w} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} $$Draw the basis vectors for $E$, $B$ , and $C$ and the vectors $\text{v}$ and $\text{w}$ on a piece of paper.
Express $\text{v}$ and $\text{w}$ in the basis $B$.
Express $\text{v}$ and $\text{w}$ in the basis $C$.
Find the change of basis matrix $T_E^B$ that given a vector expressed in the basis E maps it to the basis B.
Find the change of basis matrix $T_E^C$ that given a vector expressed in the basis E maps it to the basis C.
Use the change of basis matrices to transform $\text{v}$ and $\text{w}$ from standard basis to the basis $B$ and $C$ respectively. Verify that the resulting coordinates match your results from the previous steps.
# Write solutions here
Let $ T: \mathbb{R}^2 \to \mathbb{R}^2 $ be a linear transformation represented by the matrix: $$ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $$ in the standard basis. Let $$ B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\} $$ be a new basis.
# Write solutions here
Suppose $ \mathbb{R}^3 $ has a basis given by $$ B = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}. $$
# Write solutions here