Task 1: Differentiate the following univariate functions
- For $f\left( x \right) = {\left( {6{x^2} + 7x} \right)^4}$ show that $\frac{\partial f}{\partial x} = {{4\left( {12x + 7} \right){{\left( {6{x^2} + 7x} \right)}^3}}}$
- For $g\left( t \right) = {\left( {4{t^2} - 3t + 2} \right)^{ - 2}}$ show that $\frac{\partial g}{\partial t} = {{ - 2\left( {8t - 3} \right){{\left( {4{t^2} - 3t + 2} \right)}^{ - 3}}}}$
- For $g_2\left( x \right) = 2\sin \left( {3x + \tan \left( x \right)} \right)$ show that $ \frac{\partial g_2}{\partial x} = 2\left( {3 + {{\sec }^2}\left( x \right)} \right)\cos \left( {3x + \tan \left( x \right)} \right)$
- For $g_3\left( x \right) = {{\bf{e}}^{1 - \cos \left( x \right)}}$ show that $\frac{\partial g_3}{\partial x} = \sin (x) \bf{e}^{1 - \cos (x)}$